Hazard Zoning of Harmful Algal Bloom Disasters in Zhejiang Coastal Waters Using GIS: 1933–2021
DOI:
https://doi.org/10.32908/JMEE.v11.2024040101Keywords:
Hazard zoning, harmful algal blooms disasters, historical records, Kernel density estimation, spatial distribution, Zhejiang coastal watersAbstract
The coastal waters of Zhejiang Province in China experience a high incidence of harmful algal blooms (HABs). It is therefore important to carry out hazard zoning to prevent and mitigate these HAB disasters. According to the historical record data of HAB disasters from 1933 to 2021, the frequency, duration, area and algal toxicity of HAB occurrences can be used as evaluation indicators. A method for hazard zoning of HAB disasters and a method for verifying the rationality of the zoning results are proposed. The hazard zoning results of HAB disasters in the coastal waters of Zhejiang from 1933 to 2021 (H1933–2021) show that very-high hazard degree areas of coastal waters of Zhejiang Province were found in Shengshan waters, the eastern waters of Zhujiajian and Nanji Islands’ waters. Due to the influence of marine environmental factors, the spatial distribution of hazard degree of HAB disasters is dynamic, so it is recommended that the hazard zoning of HAB disasters be carried out once every five years. The rationality of the zoning results from 2017 to 2021 is verified, showing that the hazard zoning method of HAB disasters proposed in this study has a good rationality and credibility. This study utilized a qualitative approach to visually identify the spatial distribution of hazard degree zoning of HAB disasters in the Zhejiang Province coastal waters over the last 88 years. This has provided useful information to help prevent and mitigate HAB disasters and guide mariculture and coastal tourism planning.
References
Agardy, T. (2010). Ocean zoning: making marine management more effective. Earthscan.
Azizi, H.A., Asupyani, H., Akbar, F., Sulaksana, N. (2020). Landslide Zoning with GIS Analysis Method: Case Study Cipelah And Its Surroundings Area, Rancabali Subdistrict, Bandung Regency, West Java. IOP Conference Series: Earth and Environmental Science, 412, 012023. 10.1088/1755-1315/412/1/012023.
Bakri. N., Yudistira, T., Sopyan Y. (2021). Vulnerability Analysis of Earthquake Hazards in Tasikmalaya City Using Horizontal to Vertical Spectral Ratio (HVSR) Method. IOP Conference Series: Earth and Environmental Science, 873(1), 012085. doi:10.1088/1755-1315/873/1/012085
Burkholder, J.M. (1998). Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecological Applications, 8, S37-S62. doi:10.1890/1051-0761(1998)8[S37:IOHMAH]2.0.CO;2
Caldana, N., Nitsche, P.R., Batista, Ferreira, L., Martelócio, A., Zaccheo, P., Martins, J. (2020). Agroclimatic Risk Zoning of Papaya (Carica papaya L.) in the Hydrographic Basin of Paraná River III, Brazil. Revista Agrogeoambiental, 12, 120. DOI:10.18406/2316-1817v12n320201514
Fernández, D.S., Lutz, M.A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1-4), 90-98. doi:10.1016/j.enggeo.2009.12.006
Freer, G.L, Schaerer, P.A. (1980). Snow Avalanche Hazard Zoning in British Columbia, Canada. Journal of Glaciology, 26(94), 345-354. doi:10.1017/s0022143000010881
García, J.E.R, Romero, B.C, Hernández, J.C.M. (2020). Zoning the susceptibility to landslides associated with natural phenomena in the Bahia de Banderas region. Revista Bio Ciencias, 7, e892. DOI:10.15741/revbio.07.e892
Nguyen, N. T. T., & Gretchen, G. (2018). Regional risk zonation of environmental pollution on marine and coastal zone. Journal of Marine Environmental Engineering, 10(2), 97-107.
Hallegraeff, G.M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79-99. doi:10.2216/i0031-8884-32-2-79.1
Hallegraeff, G.M. (1995). Harmful algal blooms: A global overview. In: Hallegraeff GM, Anderson DM, Cembella A, editor. Manual on harmful marine microalgae. Paris: UNESCO, 1-22.
Hallegraeff, G.M., Anderson, D.M., Belin, C., Bottein, M.D., Bresnan, E., Chinain, M., Enevoldsen, H., Iwataki, M., Karlson, B., McKenzie, C.H., Sunesen, I., Pitcher, G.C., Provoost, P., Richardson, A., Schweibold, L., Tester, P.A., Trainer, V.L., Yñiguez, A.T., Adriana Zingone, A. (2021). Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun Earth Environ, 2, 117. https://doi.org/10.1038/s43247-021-00178-8
Hoagland, P., Anderson, D.M., Kaoru, Y., White, A.W. (2002). The economic effects of harmful algal blooms in the United States: estimates, assessment issues, and information needs. Estuaries, 25, 819-837. doi:10.1007/BF02804908
Hosseini, S.M., Sadrafshari, S., Fayzolahpour, M. (2012). Desertification hazard zoning in Sistan Region, Iran. J. Geogr. Sci., 22, 885-894. https://doi.org/10.1007/s11442-012-0970-x
Jia, Y., Zhu, C., Liu, L., & Wang, D. (2016). Marine Geohazards: Review and Future Perspective [Review]. Acta Geologica Sinica (English Edition), 90(4), 1455-1470. http://doi.org/10.1111/1755-6724.12779
Kulhawy, F.H, Ninyo, A. (1977). Earthquakes and earthquake zoning in New York State. Environmental & Engineering Geoscience, 2, 69-87. doi:10.2113/gseegeosci.xiv.2.69
Landsberg, J.H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10, 113-390. doi:10.1080/20026491051695
Liu, D., Keesing, J.K., He, P., Wang, Z., Shi, Y., Wang, Y. (2013). The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci, 129, 2-10. doi: 10.1016/j.ecss.2013.05.021
Mohan, R., & Herrington, T. (2021). Coastal resiliency considerations for Americas four coasts: Preparing for 2100. Journal of Marine Environmental Engineering, 10(4), 319-330.
Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33, 1065-1076. doi:10.1214/aoms/1177704472
Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27, 832-837. doi:10.1214/aoms/1177728190
Saaty, T.L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation, McGraw-Hill.
Sakamoto, S., Lim, W.A., Lu, D., Dai, X., Orlova, T., Iwataki, M. (2020). Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia. Harmful Algae, 102. doi:10.1016/j.hal.2020.101787.
Sellner, K.G., Doucette, G.D., Kirkpatrick, G. (2003). Harmful algal blooms: causes, impacts, and detection. Journal of Industrial Microbiology and Biotechnology, 30, 383-406. doi:10.1007/s10295-003-0074-9
Sheather, S.J., Jones, M.C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society Series B: Methodological, 53, 683-690. http://doi.org/10.1111/j.2517-6161.1991.tb01857.x
Shumway, S.E. (1990). A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society, 21, 65-104. doi:10.1111/j.1749-7345. 1990.tb00529.x
Song, N.Q., Wang, N., Lu, Y., Zhang, J.R. (2016). Temporal and spatial characteristics of harmful algal blooms in the Bohai Sea during 1952–2014. Continental Shelf Research, 122, 77-84. doi:10.1016/j.csr.2016.04.006
Singh, R.K., Soni. A., Kumar, S., Pasupuleti, S., Govind, V. (2020). Zonation of flood prone area in integrated framework of hydrodynamic model and ANN. Water Science & Technology Water Supply, 21, 1-4. DOI:10.2166/ws.2020.252
Steidinger, K.A. (1993). Some taxonomic and biological aspects of toxic dinoflagellates. In: Falconer IR, editor. Algal toxins in seafood and drinking water. New York: Academic Press, 1–28.
Sun. M,, Li, Y., Ren, Y., Chen, Y. (2022). Redefine Sustainable Fisheries Targets Under the Impact of the Southern Yellow Sea Green Tide: Mitigating the Recurring Surge in Natural Mortality. Frontiers in Marine Science, 9, 813024.
Vaidya, O.S., Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169, 1-29. doi:10.1016/j.ejor.2004.04.028
Van Dolah, F.M. (2000). Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108, 133-141. doi:10.1289/ehp. 00108s1133
Van Dolah, F.M., Roelke, D., Greene, R.M. (2001). Health and ecological impacts of harmful algal blooms: risk assessment needs. Human and Ecological Risk Assessment: An International Journal, 7, 1329-1345. doi:10.1080/20018091095032
Wang, F.H. (2006). Quantitative methods and applications in GIS. Florida: CRC Press.
Zhang, Y., He, P., Li, H., Li, G., Liu, J., Jiao, F., Zhang, J., Huo, Y., Shi, X., Su, R. (2019). Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. Natl. Sci. Rev., 6, 825–838. doi: 10.1093/nsr/nwz026
Zhao, D.Z., Zhao, L., Zhang, F.S., Zhang, X.Y. (2004). Temporal occurrence and spatial distribution of red tide events in China’s coastal waters. Human and Ecological Risk Assessment: An International Journal, 10, 945-957. doi:10.1080/10807030490889030
Zhu, C., Liu, X., Shan, H., Zhang, H., Shen, Z., Zhang, B., & Jia, Y. (2018). Properties of suspended sediment concentrations in the Yellow River delta based on observation. Marine Georesources & Geotechnology, 36(1), 139-149. doi:10.1080/1064119X.2017.1328715