Review of Development of Submersible Deep-Sea Habitat Observation Technology

Authors

  • Zhongjun Ding College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao; 266590, China Author
  • Zhiyuan Li College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao; 266590, China Author
  • Guangzhao Diao Jinan jundaren Experimental Instrument Co., Ltd, Jinan; 250014, China Author
  • Dewei Li National Deep Sea Center, Qingdao; 266237, China Author
  • Hongyu Li College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao; 266590, China Author

DOI:

https://doi.org/10.32908/JMEE.v11.2023053101

Keywords:

manned submersible, deep-sea habitat, in situ observations

Abstract

To further leverage the technical advantages of using manned submersibles to conduct deep-sea habitat observations and their significant role in deep-sea environmental monitoring and protection, this paper provides an overview of representative technologies for observing key environmental elements in deep-sea habitats, including the seabed micro-morphology, physical environment, and chemical environment. These precise observations are essential for deep-sea habitat research. The technologies discussed encompass high-resolution acoustic and optical observations of terrain and geomorphology during manned deep-sea dives; conductivity, temperature, depth measurements; turbulence analysis; in-situ detection of physical parameters such as sediment conductivity, heat, and radioactivity; and in situ chemical parameter detection using electrochemical technology, spectroscopy, mass spectrometry, surface plasmon resonance, and microfluidics. This article emphasizes the successful applications of representative manned deep-sea observation technologies and highlights their significance. Furthermore, future trends and potential applications in this field are discussed.

References

Barus, C., Chen Legrand, D., Striebig, N., Jugeau, B., David, A., Valladares, M.,. .. & Garçon, V. (2018). First deployment and validation of in situ silicate electrochemical sensor in seawater. Frontiers in Marine Science, 5, 60. Doi:10.3389/fmars.2018.00060

Bayon, G., Loncke, L., Dupré, S., Caprais, J. C., Ducassou, E., Duperron, S.,. .. & Woodside, J. (2009). Multi-disciplinary investigation of fluid seepage on an unstable margin: the case of the Central Nile deep sea fan. Marine Geology, 261(1-4), 92-104. Doi: 10.1016/j.margeo.2008.10.008

Becker, K., Von Herzen, R., Kirklin, J., Evans, R., Kadko, D., Kinoshita, M.,. .. & Rona, P. (1996). Conductive heat flow at the TAG active hydrothermal mound: Results from 1993–1995 submersible surveys. Geophysical research letters, 23(23), 3463-3466. Doi: 10.1029/96gl00969

Boulègue, J., Iiyama, J. T., Charlou, J. L., & Jedwab, J. (1987). Nankai Trough, Japan Trench and Kuril Trench: geochemistry of fluids sampled by submersible “Nautile”. Earth and planetary science letters, 83(1-4), 363-375. Doi: 10.1016/0012-821x(87)90078-1

Brewer, P. G., Malby, G., Pasteris, J. D., White, S. N., Peltzer, E. T., Wopenka, B.,. .. & Brown, M. O. (2004). Development of a laser Raman spectrometer for deep-ocean science. Deep Sea Research Part I: Oceanographic Research Papers, 51(5), 739-753. Doi: 10.1016/j.dsr.2003.11.005

Carson, B., Suess, E., & Strasser, J. C. (1990). Fluid flow and mass flux determinations at vent sites on the Cascadia margin accretionary prism. Journal of Geophysical Research: Solid Earth, 95(B6), 8891-8897. Doi: 10.1029/jb095ib06p08891

Chen, N., Han, C., Zheng, M., & Zhou, J. (2022). Review of Hydrothermal Area Benthic Ecosystem Observation Technology. Journal of Ocean Technology, 41(06): 66-75. Doi: 10.3969/j.issn.1003-2029.2022.06.009

Colas, F., Crassous, M. P., Laurent, S., Litaker, R. W., Rinnert, E., Le Gall, E.,. .. & Compere, C. (2016). A surface plasmon resonance system for the underwater detection of domoic acid. Limnology and Oceanography: Methods, 14(7), 456-465. Doi: 10.1002/lom3.10104

Creed, E., Ross, W., Lueck, R., Stern, P., Douglas, W., Wolk, F., & Hall, R. (2015, October). Integration of a RSI microstructure sensing package into a Seaglider. In OCEANS 2015-MTS/IEEE Washington (pp. 1-6). IEEE. Doi:10.23919/OCEANS.2015.7404477

Díaz-Herrera, N., Esteban, O., Navarrete, M. C., Le Haitre, M., & González-Cano, A. (2006). In situ salinity measurements in seawater with a fibre-optic probe. Measurement Science and Technology, 17(8), 2227. Doi: 10.1088/0957-0233/17/8/024

Ding Z. (2013). Seabed sediment resistivity in situ measurement technology and application research. (Doctoral dissertation, Ocean University of China). https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1013348305.nh

Ding, K., & Seyfried, W. E. (2007). In Situ Measurement of pH and Dissolved H2 in Mid-Ocean Ridge Hydrothermal Fluids at Elevated Temperatures and Pressures. Chemical Reviews, 107(2), 601–622. Doi:10.1021/cr050367s

Ding, Z. J., Liu, B., Liu, Z. C., & Xin, H. (2009). Research on multi-function in-situ detect miniature probe of sea sediment. Journal of electronic measurement and instrument, 23(12), 44-48.

Ding, Z., Meng, D., Li, H., & Feng, Z. (2023). Study on thermoelectric acoustic property detection system of marine sediments. Journal of Ocean Technology, (03), 79-87. Doi: 10.3969/j.issn.1003-2029.2023.03.010

Ding, Z., Zhang, Y., Shi, X., Li, D., Zhao, Q. (2021). New technology of manned submersible approach exploration for deep sea mineral resources[J]. The Chinese Journal of Nonferrous Metals, 31(10): 2757−2770. Doi: 10.11817/j.ysxb.1004.0609.2021-37994

Ding, Z., Zhao, Z., Zhang, C., Pan, W., Liu, Y. (2019). 3D reconstruction of deep sea geomorphologic linear structured light based on manned submersible. Infrared and Laser Engineering, 48(05): 11-19. Doi: 10.3788/IRLA201948.0503001

Feng, X., Wang, L., Ji, C., Wang, H., Zhu, C., & Jia, Y. (2023). The impact of internal solitary waves on deep-sea benthic organisms on the continental slope of the northern South China Sea. Frontiers in Marine Science, 10(2023), 1184397. Doi:10.3389/fmars.2023.1184397

Francis, T. J. G. (1985). Resistivity measurements of an ocean floor sulphide mineral deposit from the submersible Cyana. Marine Geophysical Researches, 7(3), 419-437. Doi: 10.1007/bf00316778

Fujii, T., & Fukuba, T. (2007, April). Microfluidics-based in situ Biological and Chemical Sensing-Towards Integrated and Real-time Measurement in Deep Sea. In 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (pp. 210-210). IEEE. Doi: 10.1109/ut.2007.370786

Fukuba, T., Imhof, A., Matsunaga, M., Takagi, N., Yamamoto, T., Okamura, K.,. .. & Fujii, T. (2005, May). Development of miniaturized in situ analysis devices for biological and chemical oceanography. In 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology (pp. 56-59). IEEE. Doi: 10.1109/mmb.2005.1548383

Fukuba, T., Miyaji, A., Okamoto, T., Yamamoto, T., Kaneda, S., & Fujii, T. (2011). Integrated in situ genetic analyzer for microbiology in extreme environments. RSC advances, 1(8), 1567-1573. Doi: 10.1039/c1ra00490e

Fukuba, T., Naganuma, T., & Fujii, T. (2002, April). Microfabricated flow-through PCR device for underwater microbiological study. In Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No. 02EX556) (pp. 101-105). IEEE. Doi: 10.1109/ut.2002.100240

Fukuba, T., Yamamoto, T., Naganuma, T., & Fujii, T. (2004). Microfabricated flow-through device for DNA amplification—towards in situ gene analysis. Chemical Engineering Journal, 101(1-3), 151-156. Doi: 10.1016/j.cej.2003.11.016

Gargett, A. E. (1982). Turbulence measurements from a submersible. Deep Sea Research Part A. Oceanographic Research Papers, 29(9), 1141-1158. Doi: 10.1016/0198-0149(82)90032-2

Gebruk, A. V., Chevaldonné, P., Shank, T., Lutz, R. A., & Vrijenhoek, R. C. (2000). Deep-sea hydrothermal vent communities of the Logatchev area (14 45′ N, Mid-Atlantic Ridge): Diverse biotopes and high biomass. Journal of the Marine Biological Association of the United Kingdom, 80(3), 383-393. Doi: 10.1017/s0025315499002088

Hamilton, E. L., Bucker, H. P., Keir, D. L., & Whitney, J. A. (1970). Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible. Journal of Geophysical Research, 75(20), 4039-4049. Doi: 10.1029/jb075i020p04039

Hattori, M., Okano, M., & Togawa, O. (2000, May). Sea bottom gamma ray measurement by NaI (Tl) scintillation spectrometers installed on manned submersibles, ROV and sea bottom long term observatory. In Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No. 00EX418) (pp. 212-217). IEEE. Doi: 10.1109/ut.2000.852545

Hou, H., Tian, Y., Li, Y., & Zheng, R. (2014). Study of pressure effects on laser induced plasma in bulk seawater. Journal of Analytical Atomic Spectrometry, 29(1), 169-175. Doi: 10.1039/c3ja50244a

Jackson, P. D. (1975). An electrical resistivity method for evaluating the in‐situ porosity of clean marine sands. Marine Georesources & Geotechnology, 1(2), 91-115. Doi: 10.1080/10641197509388156

Jia, Y., Chen, T., Li, P., Li, Z., Hu, C., Liu, X., & Shan, H. (2022). Research progress on the in-situ monitoring technologies of marine geohazards. The Chinese Journal of Geological Hazard and Control, 2022, 33(03): 1-14. Doi: 10. 16031/j.cnki.issn.1003-8035. 2022. 03-01

Jia, Y., Wang, Z. H., Liu, X. L., Yang, Z. N., Zhu, C. Q., Wang, X. L., & Shan, H. X. (2017). The research progress of field investigation and in-situ observation methods for submarine landslide. Periodical of Ocean University of China, 47(10), 61-72. Doi: 10. 16441/j.cnki.hdxb.20160500

Kelley, D. S., Karson, J. A., Blackman, D. K., FruÈh-Green, G. L., Butterfield, D. A., Lilley, M. D.,. .. & AT3-60 Shipboard Party. (2001). An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 N. Nature, 412(6843), 145-149. Doi: 10.1038/35084000

Kim, Y. C., Cramer, J. A., & Booksh, K. S. (2011). Investigation of a fiber optic surface plasmon spectroscopy in conjunction with conductivity as an in situ method for simultaneously monitoring changes in dissolved organic carbon and salinity in coastal waters. Analyst, 136(20), 4350-4356. Doi: 10.1039/c1an15085e

Kinoshita, M. (1996). Geothermal surveys on submarine hydrothermal systems using submersibles in Japan. Marine georesources & geotechnology, 14(1), 65-75. Doi: 10.1080/10641199609388303

Kumagai, M., Ura, T., Kuroda, Y., & Walker, R. (2002). A new autonomous underwater vehicle designed for lake environment monitoring. Advanced Robotics, 16(1), 17-26. Doi: 10.1163/156855302317413718

Lawrence-Snyder, M., Scaffidi, J., Angel, S. M., Michel, A. P., & Chave, A. D. (2006). Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions. Applied spectroscopy, 60(7), 786-790. Doi: 10.1366/000370206777887161

Le Bris, N., Sarradin, P. M., Birot, D., & Alayse-Danet, A. M. (2000). A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities. Marine Chemistry, 72(1), 1-15. Doi: 10.1016/s0304-4203(00)00057-8

Liu, B. H., Ding, Z. J., Shi, X. P., Yu, K. B., Li, D. W., & Li, B. G. (2015). Progress of the application and research of manned submersibles used in deep sea scientific investigations. Haiyang Xuebao, 37(10), 1-10. Doi: 10.3969/j.issn.0253-4193.2015.10.001

Liu, C. S., Schnurle, P., Wang, Y., San-Hsiung, C., Song-Chuen, C., & Hsiuan, T. H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 615. Doi: 10.3319/TAO.2006.17.4.615(GH)

Macdonald, K., Luyendyk, B. P., Mudie, J. D., & Spiess, F. N. (1975). Near-bottom geophysical study of the Mid-Atlantic Ridge median valley near lat 37 N: Preliminary observations. Geology, 3(4), 211-215. Doi: 10.1130/0091-7613(1975)3<211: ngsotm>2.0.co;2

Mart, Y., Auffret, G. A., Auzende, J. M., & Pastouret, L. (1979). Geological observations from a submersible dive on the western continental slope of the Armorican Massif. Marine Geology, 31(3-4), M61-M68. Doi: 10.1016/0025-3227(79)90033-1

Matsunaga, M., Fukuba, T., Yamamoto, T., & Fujii, T. (2004, November). Microfabricated devices for DNA extraction toward realization of deep-sea in situ gene analysis. In Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600) (Vol. 1, pp. 89-94). IEEE. Doi: 10.1109/oceans.2004.1402900

Michel, A. P., Lawrence-Snyder, M., Angel, S. M., & Chave, A. D. (2007). Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters. Applied optics, 46(13), 2507-2515. Doi: 10.1364/ao.46.002507

Mowlem, M., Schaap, A., & Beaton, A. (2019). Ocean In Situ Sensors: New Developments in Biological Sensors- Microfluidics-Based Sensors: A Lab on a Chip. In Challenges and Innovations in Ocean In Situ Sensors-Measuring Inner Ocean Processes and Health in the Digital Age (pp. 64-80). Elsevier.

Owen, H., Battey, D. E., Pelletier, M. J., & Slater, J. B. (1995, April). New spectroscopic instrument based on volume holographic optical elements. In Practical Holography IX (Vol. 2406, pp. 260-267). SPIE. Doi: 10.1117/12.206226

Pasteris, J. D., Wopenka, B., Freeman, J. J., Brewer, P. G., White, S. N., Peltzer, E. T., & Malby, G. E. (2004). Raman spectroscopy in the deep ocean: successes and challenges. Applied Spectroscopy, 58(7), 195A-208A. Doi: 10.1366/0003702041389319

Perez, J. A. A., Gavazzoni, L., De Souza, L. H. P., Sumida, P. Y. G., & Kitazato, H. (2020). Deep-sea habitats and megafauna on the slopes of the São Paulo Ridge, SW Atlantic. Frontiers in Marine Science, 767. Doi: 10.3389/fmars.2020.572166

Peterson, A. K. (2013). Microstructure measurements using a glider in the Faroe Bank Channel Overflow (Master's thesis, The University of Bergen).

Richards, A. F. (1972). Instrumentation of two submersibles for in situ geotechnical measurements in cohesive sea floor soils. In Int. Ocean Development Conf. Preprints (pp. 1329-1346).

Roberts, H. H., Shedd, W., & Hunt Jr, J. (2010). Dive site geology: DSV ALVIN (2006) and ROV JASON II (2007) dives to the middle-lower continental slope, northern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 57(21-23), 1837-1858. Doi: 10.1016/j. dsr2. 2010.09.001

Singh, J. P., & Thakur, S. N. (2007). Laser-Induced Breakdown Spectroscopy. Doi: 10.1016/B978-0-444-51734-0.X5001-7

Stark, N., Le Dantec, N., Corella, J. P., Barry, D. A., Lemmin, U., Girardclos, S., & Kopf, A. (2013). Deployment of a dynamic penetrometer from manned submersibles for fine‐scale geomorphology studies. Limnology and Oceanography: methods, 11(10), 529-539. Doi: 10.4319/lom.2013.11.529

Sun, X., Guo, X., Wu, J. (2020). Design and experiment of resistivity monitoring probe for gas migration in marine sand[J]. Haiyang Xuebao, 42(5): 139–149. Doi: 10.3969/j.issn.0253−4193.2020.05.013

Takahashi, T., Yoshino, S., Takaya, Y., Nozaki, T., Ohki, K., Ohki, T.,. .. & Thornton, B. (2020). Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis. Deep Sea Research Part I: Oceanographic Research Papers, 158, 103232. Doi: 10.1016/j.dsr.2020.103232

Thouron, D., Vuillemin, R., Philippon, X., Lourenço, A., Provost, C., Cruzado, A., & Garçon, V. (2003). An autonomous nutrient analyzer for oceanic long-term in situ biogeochemical monitoring. Analytical chemistry, 75(11), 2601-2609. Doi: 10.1021/ac020696+

Usui, A., Sato, H., Nishi, K., Thornton, B., Uraba, T., Graham, I., & Okamoto, N. (2013, September). Geological characterization of co-rich ferromaganese crusts over the northwestern pacific seamounts. In 2013 OCEANS-San Diego (pp. 1-3). IEEE. Doi: 10.23919/OCEANS.2013.6741019

Vuillemin, R., Le Roux, D., Dorval, P., Bucas, K., Sudreau, J. P., Hamon, M.,. .. & Sarradin, P. M. (2009). CHEMINI: A new in situ CHEmical MINIaturized analyzer. Deep Sea Research Part I: Oceanographic Research Papers, 56(8), 1391-1399. Doi: 10.1016/j.dsr.2009.02.002

Wang, X., Ding, Z., Yang, L., Li, D., & Zhao, S. (2019). High resolution temperature gradient detection system based on manned hov. Electronic Measurement Technology. (01),103-111. Doi:10.19651/j.cnki.emt.1801935

Wankel, S. D., Joye, S. B., Samarkin, V. A., Shah, S. R., Friederich, G., Melas-Kyriazi, J., & Girguis, P. R. (2010). New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry. Deep Sea Research Part II: Topical Studies in Oceanography, 57(21-23), 2022-2029. Doi: 10.1016/j.dsr2.2010.05.009

Wei, X., Ding, Z., Wu, J., Liu, B. (2013). Research on the high precision resistivity probe with four point-electrodes for marine sediments [J]. Journal of Electronic Measurement and Instrument (In Chinese), 27(09): 810-816. Doi: 10.3724/SP.J.1187.2013. 00810

Xu, Q., Hu, Z., Ye, C., Wang, S., Liu, S., Cao, J. (2022). Present Situation and Prospect of Deep-sea Manned Submersible Technology and Its Application. Science and Technology (In Chinese), 1(02): 36-48. Doi: 10.3981/j.issn.2097-0781.2022.02.003

Yin, L., Li, Y., Ma, J. (2013). Present Status of Marine Observation Technology. Ship Electronic Engineering, 33(11): 4-7+13. Doi: 10.3969/j. issnl672-9722.2013.11.002

Yoshida, N., & Tsukahara, H. (1991). Gamma-Ray Spectral Survey and 14C Measurements on the Biological Communities at the Subduction Zone Sagami Trough Using the Submersible" SHINKAI 2000". Journal of Physics of the Earth, 39(1), 255-266.

Zhang, X., Du, Z., Luan, Z., Wang, X., Xi, S., Wang, B.,. .. & Yan, J. (2017a). In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea. Geochemistry, Geophysics, Geosystems, 18(10), 3700-3713. Doi: 10.1002/2017gc006987

Zhang, X., Du, Z., Zheng, R., Luan, Z., Qi, F., Cheng, K.,. .. & Yan, J. (2017b). Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep Sea Research Part I: Oceanographic Research Papers, 123, 1-12. Doi: 10.1016/j.dsr.2017.02.005

Zhao, S., Yang, L., Liu, B. H., Ding, Z., Wang, X. (2019). The Application of High Resolution Bathymetric Sidescan Sonar System in Manned Submersible. Hydrographic Surveying and Charting, 39(3): 55-58+79. Doi: 10.3969/j.issn.1671-3044.2019.03.012

Zhong, G., & Peng, X. (2021). Transport and accumulation of plastic litter in submarine canyons—The role of gravity flows. Geology, 49(5), 581-586. Doi: org/10.1130/G48536.1

Zhu, C., Peng, J., & Jia, Y. (2023). Marine geohazards: Past, present, and future. Engineering Geology, 323, 107230. Doi:10.1016/j.enggeo.2023.107230

Zhu, M., Zhang, T. W., Yang, B., Liu, Y. Y., & Tang, J. L. (2014). Sonar system of Jiaolong human-occupied vehicle. Chinese Science Bulletin, 59(35), 3462-3470. Doi: 10.1360/N972014-00408

1

Downloads

Published

2024-08-27

Issue

Section

Review

Categories

How to Cite

Ding, Z., Li, Z., Diao, G., Li, D., & Li, H. (2024). Review of Development of Submersible Deep-Sea Habitat Observation Technology. Journal of Marine Environmental Engineering, 11(3), 227-254. https://doi.org/10.32908/JMEE.v11.2023053101

Similar Articles

You may also start an advanced similarity search for this article.