Review of Development of Submersible Deep-Sea Habitat Observation Technology
DOI:
https://doi.org/10.32908/JMEE.v11.2023053101Keywords:
manned submersible, deep-sea habitat, in situ observationsAbstract
To further leverage the technical advantages of using manned submersibles to conduct deep-sea habitat observations and their significant role in deep-sea environmental monitoring and protection, this paper provides an overview of representative technologies for observing key environmental elements in deep-sea habitats, including the seabed micro-morphology, physical environment, and chemical environment. These precise observations are essential for deep-sea habitat research. The technologies discussed encompass high-resolution acoustic and optical observations of terrain and geomorphology during manned deep-sea dives; conductivity, temperature, depth measurements; turbulence analysis; in-situ detection of physical parameters such as sediment conductivity, heat, and radioactivity; and in situ chemical parameter detection using electrochemical technology, spectroscopy, mass spectrometry, surface plasmon resonance, and microfluidics. This article emphasizes the successful applications of representative manned deep-sea observation technologies and highlights their significance. Furthermore, future trends and potential applications in this field are discussed.
References
Barus, C., Chen Legrand, D., Striebig, N., Jugeau, B., David, A., Valladares, M.,. .. & Garçon, V. (2018). First deployment and validation of in situ silicate electrochemical sensor in seawater. Frontiers in Marine Science, 5, 60. Doi:10.3389/fmars.2018.00060
Bayon, G., Loncke, L., Dupré, S., Caprais, J. C., Ducassou, E., Duperron, S.,. .. & Woodside, J. (2009). Multi-disciplinary investigation of fluid seepage on an unstable margin: the case of the Central Nile deep sea fan. Marine Geology, 261(1-4), 92-104. Doi: 10.1016/j.margeo.2008.10.008
Becker, K., Von Herzen, R., Kirklin, J., Evans, R., Kadko, D., Kinoshita, M.,. .. & Rona, P. (1996). Conductive heat flow at the TAG active hydrothermal mound: Results from 1993–1995 submersible surveys. Geophysical research letters, 23(23), 3463-3466. Doi: 10.1029/96gl00969
Boulègue, J., Iiyama, J. T., Charlou, J. L., & Jedwab, J. (1987). Nankai Trough, Japan Trench and Kuril Trench: geochemistry of fluids sampled by submersible “Nautile”. Earth and planetary science letters, 83(1-4), 363-375. Doi: 10.1016/0012-821x(87)90078-1
Brewer, P. G., Malby, G., Pasteris, J. D., White, S. N., Peltzer, E. T., Wopenka, B.,. .. & Brown, M. O. (2004). Development of a laser Raman spectrometer for deep-ocean science. Deep Sea Research Part I: Oceanographic Research Papers, 51(5), 739-753. Doi: 10.1016/j.dsr.2003.11.005
Carson, B., Suess, E., & Strasser, J. C. (1990). Fluid flow and mass flux determinations at vent sites on the Cascadia margin accretionary prism. Journal of Geophysical Research: Solid Earth, 95(B6), 8891-8897. Doi: 10.1029/jb095ib06p08891
Chen, N., Han, C., Zheng, M., & Zhou, J. (2022). Review of Hydrothermal Area Benthic Ecosystem Observation Technology. Journal of Ocean Technology, 41(06): 66-75. Doi: 10.3969/j.issn.1003-2029.2022.06.009
Colas, F., Crassous, M. P., Laurent, S., Litaker, R. W., Rinnert, E., Le Gall, E.,. .. & Compere, C. (2016). A surface plasmon resonance system for the underwater detection of domoic acid. Limnology and Oceanography: Methods, 14(7), 456-465. Doi: 10.1002/lom3.10104
Creed, E., Ross, W., Lueck, R., Stern, P., Douglas, W., Wolk, F., & Hall, R. (2015, October). Integration of a RSI microstructure sensing package into a Seaglider. In OCEANS 2015-MTS/IEEE Washington (pp. 1-6). IEEE. Doi:10.23919/OCEANS.2015.7404477
Díaz-Herrera, N., Esteban, O., Navarrete, M. C., Le Haitre, M., & González-Cano, A. (2006). In situ salinity measurements in seawater with a fibre-optic probe. Measurement Science and Technology, 17(8), 2227. Doi: 10.1088/0957-0233/17/8/024
Ding Z. (2013). Seabed sediment resistivity in situ measurement technology and application research. (Doctoral dissertation, Ocean University of China). https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1013348305.nh
Ding, K., & Seyfried, W. E. (2007). In Situ Measurement of pH and Dissolved H2 in Mid-Ocean Ridge Hydrothermal Fluids at Elevated Temperatures and Pressures. Chemical Reviews, 107(2), 601–622. Doi:10.1021/cr050367s
Ding, Z. J., Liu, B., Liu, Z. C., & Xin, H. (2009). Research on multi-function in-situ detect miniature probe of sea sediment. Journal of electronic measurement and instrument, 23(12), 44-48.
Ding, Z., Meng, D., Li, H., & Feng, Z. (2023). Study on thermoelectric acoustic property detection system of marine sediments. Journal of Ocean Technology, (03), 79-87. Doi: 10.3969/j.issn.1003-2029.2023.03.010
Ding, Z., Zhang, Y., Shi, X., Li, D., Zhao, Q. (2021). New technology of manned submersible approach exploration for deep sea mineral resources[J]. The Chinese Journal of Nonferrous Metals, 31(10): 2757−2770. Doi: 10.11817/j.ysxb.1004.0609.2021-37994
Ding, Z., Zhao, Z., Zhang, C., Pan, W., Liu, Y. (2019). 3D reconstruction of deep sea geomorphologic linear structured light based on manned submersible. Infrared and Laser Engineering, 48(05): 11-19. Doi: 10.3788/IRLA201948.0503001
Feng, X., Wang, L., Ji, C., Wang, H., Zhu, C., & Jia, Y. (2023). The impact of internal solitary waves on deep-sea benthic organisms on the continental slope of the northern South China Sea. Frontiers in Marine Science, 10(2023), 1184397. Doi:10.3389/fmars.2023.1184397
Francis, T. J. G. (1985). Resistivity measurements of an ocean floor sulphide mineral deposit from the submersible Cyana. Marine Geophysical Researches, 7(3), 419-437. Doi: 10.1007/bf00316778
Fujii, T., & Fukuba, T. (2007, April). Microfluidics-based in situ Biological and Chemical Sensing-Towards Integrated and Real-time Measurement in Deep Sea. In 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (pp. 210-210). IEEE. Doi: 10.1109/ut.2007.370786
Fukuba, T., Imhof, A., Matsunaga, M., Takagi, N., Yamamoto, T., Okamura, K.,. .. & Fujii, T. (2005, May). Development of miniaturized in situ analysis devices for biological and chemical oceanography. In 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology (pp. 56-59). IEEE. Doi: 10.1109/mmb.2005.1548383
Fukuba, T., Miyaji, A., Okamoto, T., Yamamoto, T., Kaneda, S., & Fujii, T. (2011). Integrated in situ genetic analyzer for microbiology in extreme environments. RSC advances, 1(8), 1567-1573. Doi: 10.1039/c1ra00490e
Fukuba, T., Naganuma, T., & Fujii, T. (2002, April). Microfabricated flow-through PCR device for underwater microbiological study. In Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No. 02EX556) (pp. 101-105). IEEE. Doi: 10.1109/ut.2002.100240
Fukuba, T., Yamamoto, T., Naganuma, T., & Fujii, T. (2004). Microfabricated flow-through device for DNA amplification—towards in situ gene analysis. Chemical Engineering Journal, 101(1-3), 151-156. Doi: 10.1016/j.cej.2003.11.016
Gargett, A. E. (1982). Turbulence measurements from a submersible. Deep Sea Research Part A. Oceanographic Research Papers, 29(9), 1141-1158. Doi: 10.1016/0198-0149(82)90032-2
Gebruk, A. V., Chevaldonné, P., Shank, T., Lutz, R. A., & Vrijenhoek, R. C. (2000). Deep-sea hydrothermal vent communities of the Logatchev area (14 45′ N, Mid-Atlantic Ridge): Diverse biotopes and high biomass. Journal of the Marine Biological Association of the United Kingdom, 80(3), 383-393. Doi: 10.1017/s0025315499002088
Hamilton, E. L., Bucker, H. P., Keir, D. L., & Whitney, J. A. (1970). Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible. Journal of Geophysical Research, 75(20), 4039-4049. Doi: 10.1029/jb075i020p04039
Hattori, M., Okano, M., & Togawa, O. (2000, May). Sea bottom gamma ray measurement by NaI (Tl) scintillation spectrometers installed on manned submersibles, ROV and sea bottom long term observatory. In Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No. 00EX418) (pp. 212-217). IEEE. Doi: 10.1109/ut.2000.852545
Hou, H., Tian, Y., Li, Y., & Zheng, R. (2014). Study of pressure effects on laser induced plasma in bulk seawater. Journal of Analytical Atomic Spectrometry, 29(1), 169-175. Doi: 10.1039/c3ja50244a
Jackson, P. D. (1975). An electrical resistivity method for evaluating the in‐situ porosity of clean marine sands. Marine Georesources & Geotechnology, 1(2), 91-115. Doi: 10.1080/10641197509388156
Jia, Y., Chen, T., Li, P., Li, Z., Hu, C., Liu, X., & Shan, H. (2022). Research progress on the in-situ monitoring technologies of marine geohazards. The Chinese Journal of Geological Hazard and Control, 2022, 33(03): 1-14. Doi: 10. 16031/j.cnki.issn.1003-8035. 2022. 03-01
Jia, Y., Wang, Z. H., Liu, X. L., Yang, Z. N., Zhu, C. Q., Wang, X. L., & Shan, H. X. (2017). The research progress of field investigation and in-situ observation methods for submarine landslide. Periodical of Ocean University of China, 47(10), 61-72. Doi: 10. 16441/j.cnki.hdxb.20160500
Kelley, D. S., Karson, J. A., Blackman, D. K., FruÈh-Green, G. L., Butterfield, D. A., Lilley, M. D.,. .. & AT3-60 Shipboard Party. (2001). An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 N. Nature, 412(6843), 145-149. Doi: 10.1038/35084000
Kim, Y. C., Cramer, J. A., & Booksh, K. S. (2011). Investigation of a fiber optic surface plasmon spectroscopy in conjunction with conductivity as an in situ method for simultaneously monitoring changes in dissolved organic carbon and salinity in coastal waters. Analyst, 136(20), 4350-4356. Doi: 10.1039/c1an15085e
Kinoshita, M. (1996). Geothermal surveys on submarine hydrothermal systems using submersibles in Japan. Marine georesources & geotechnology, 14(1), 65-75. Doi: 10.1080/10641199609388303
Kumagai, M., Ura, T., Kuroda, Y., & Walker, R. (2002). A new autonomous underwater vehicle designed for lake environment monitoring. Advanced Robotics, 16(1), 17-26. Doi: 10.1163/156855302317413718
Lawrence-Snyder, M., Scaffidi, J., Angel, S. M., Michel, A. P., & Chave, A. D. (2006). Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions. Applied spectroscopy, 60(7), 786-790. Doi: 10.1366/000370206777887161
Le Bris, N., Sarradin, P. M., Birot, D., & Alayse-Danet, A. M. (2000). A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities. Marine Chemistry, 72(1), 1-15. Doi: 10.1016/s0304-4203(00)00057-8
Liu, B. H., Ding, Z. J., Shi, X. P., Yu, K. B., Li, D. W., & Li, B. G. (2015). Progress of the application and research of manned submersibles used in deep sea scientific investigations. Haiyang Xuebao, 37(10), 1-10. Doi: 10.3969/j.issn.0253-4193.2015.10.001
Liu, C. S., Schnurle, P., Wang, Y., San-Hsiung, C., Song-Chuen, C., & Hsiuan, T. H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 615. Doi: 10.3319/TAO.2006.17.4.615(GH)
Macdonald, K., Luyendyk, B. P., Mudie, J. D., & Spiess, F. N. (1975). Near-bottom geophysical study of the Mid-Atlantic Ridge median valley near lat 37 N: Preliminary observations. Geology, 3(4), 211-215. Doi: 10.1130/0091-7613(1975)3<211: ngsotm>2.0.co;2
Mart, Y., Auffret, G. A., Auzende, J. M., & Pastouret, L. (1979). Geological observations from a submersible dive on the western continental slope of the Armorican Massif. Marine Geology, 31(3-4), M61-M68. Doi: 10.1016/0025-3227(79)90033-1
Matsunaga, M., Fukuba, T., Yamamoto, T., & Fujii, T. (2004, November). Microfabricated devices for DNA extraction toward realization of deep-sea in situ gene analysis. In Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600) (Vol. 1, pp. 89-94). IEEE. Doi: 10.1109/oceans.2004.1402900
Michel, A. P., Lawrence-Snyder, M., Angel, S. M., & Chave, A. D. (2007). Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters. Applied optics, 46(13), 2507-2515. Doi: 10.1364/ao.46.002507
Mowlem, M., Schaap, A., & Beaton, A. (2019). Ocean In Situ Sensors: New Developments in Biological Sensors- Microfluidics-Based Sensors: A Lab on a Chip. In Challenges and Innovations in Ocean In Situ Sensors-Measuring Inner Ocean Processes and Health in the Digital Age (pp. 64-80). Elsevier.
Owen, H., Battey, D. E., Pelletier, M. J., & Slater, J. B. (1995, April). New spectroscopic instrument based on volume holographic optical elements. In Practical Holography IX (Vol. 2406, pp. 260-267). SPIE. Doi: 10.1117/12.206226
Pasteris, J. D., Wopenka, B., Freeman, J. J., Brewer, P. G., White, S. N., Peltzer, E. T., & Malby, G. E. (2004). Raman spectroscopy in the deep ocean: successes and challenges. Applied Spectroscopy, 58(7), 195A-208A. Doi: 10.1366/0003702041389319
Perez, J. A. A., Gavazzoni, L., De Souza, L. H. P., Sumida, P. Y. G., & Kitazato, H. (2020). Deep-sea habitats and megafauna on the slopes of the São Paulo Ridge, SW Atlantic. Frontiers in Marine Science, 767. Doi: 10.3389/fmars.2020.572166
Peterson, A. K. (2013). Microstructure measurements using a glider in the Faroe Bank Channel Overflow (Master's thesis, The University of Bergen).
Richards, A. F. (1972). Instrumentation of two submersibles for in situ geotechnical measurements in cohesive sea floor soils. In Int. Ocean Development Conf. Preprints (pp. 1329-1346).
Roberts, H. H., Shedd, W., & Hunt Jr, J. (2010). Dive site geology: DSV ALVIN (2006) and ROV JASON II (2007) dives to the middle-lower continental slope, northern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 57(21-23), 1837-1858. Doi: 10.1016/j. dsr2. 2010.09.001
Singh, J. P., & Thakur, S. N. (2007). Laser-Induced Breakdown Spectroscopy. Doi: 10.1016/B978-0-444-51734-0.X5001-7
Stark, N., Le Dantec, N., Corella, J. P., Barry, D. A., Lemmin, U., Girardclos, S., & Kopf, A. (2013). Deployment of a dynamic penetrometer from manned submersibles for fine‐scale geomorphology studies. Limnology and Oceanography: methods, 11(10), 529-539. Doi: 10.4319/lom.2013.11.529
Sun, X., Guo, X., Wu, J. (2020). Design and experiment of resistivity monitoring probe for gas migration in marine sand[J]. Haiyang Xuebao, 42(5): 139–149. Doi: 10.3969/j.issn.0253−4193.2020.05.013
Takahashi, T., Yoshino, S., Takaya, Y., Nozaki, T., Ohki, K., Ohki, T.,. .. & Thornton, B. (2020). Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis. Deep Sea Research Part I: Oceanographic Research Papers, 158, 103232. Doi: 10.1016/j.dsr.2020.103232
Thouron, D., Vuillemin, R., Philippon, X., Lourenço, A., Provost, C., Cruzado, A., & Garçon, V. (2003). An autonomous nutrient analyzer for oceanic long-term in situ biogeochemical monitoring. Analytical chemistry, 75(11), 2601-2609. Doi: 10.1021/ac020696+
Usui, A., Sato, H., Nishi, K., Thornton, B., Uraba, T., Graham, I., & Okamoto, N. (2013, September). Geological characterization of co-rich ferromaganese crusts over the northwestern pacific seamounts. In 2013 OCEANS-San Diego (pp. 1-3). IEEE. Doi: 10.23919/OCEANS.2013.6741019
Vuillemin, R., Le Roux, D., Dorval, P., Bucas, K., Sudreau, J. P., Hamon, M.,. .. & Sarradin, P. M. (2009). CHEMINI: A new in situ CHEmical MINIaturized analyzer. Deep Sea Research Part I: Oceanographic Research Papers, 56(8), 1391-1399. Doi: 10.1016/j.dsr.2009.02.002
Wang, X., Ding, Z., Yang, L., Li, D., & Zhao, S. (2019). High resolution temperature gradient detection system based on manned hov. Electronic Measurement Technology. (01),103-111. Doi:10.19651/j.cnki.emt.1801935
Wankel, S. D., Joye, S. B., Samarkin, V. A., Shah, S. R., Friederich, G., Melas-Kyriazi, J., & Girguis, P. R. (2010). New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry. Deep Sea Research Part II: Topical Studies in Oceanography, 57(21-23), 2022-2029. Doi: 10.1016/j.dsr2.2010.05.009
Wei, X., Ding, Z., Wu, J., Liu, B. (2013). Research on the high precision resistivity probe with four point-electrodes for marine sediments [J]. Journal of Electronic Measurement and Instrument (In Chinese), 27(09): 810-816. Doi: 10.3724/SP.J.1187.2013. 00810
Xu, Q., Hu, Z., Ye, C., Wang, S., Liu, S., Cao, J. (2022). Present Situation and Prospect of Deep-sea Manned Submersible Technology and Its Application. Science and Technology (In Chinese), 1(02): 36-48. Doi: 10.3981/j.issn.2097-0781.2022.02.003
Yin, L., Li, Y., Ma, J. (2013). Present Status of Marine Observation Technology. Ship Electronic Engineering, 33(11): 4-7+13. Doi: 10.3969/j. issnl672-9722.2013.11.002
Yoshida, N., & Tsukahara, H. (1991). Gamma-Ray Spectral Survey and 14C Measurements on the Biological Communities at the Subduction Zone Sagami Trough Using the Submersible" SHINKAI 2000". Journal of Physics of the Earth, 39(1), 255-266.
Zhang, X., Du, Z., Luan, Z., Wang, X., Xi, S., Wang, B.,. .. & Yan, J. (2017a). In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea. Geochemistry, Geophysics, Geosystems, 18(10), 3700-3713. Doi: 10.1002/2017gc006987
Zhang, X., Du, Z., Zheng, R., Luan, Z., Qi, F., Cheng, K.,. .. & Yan, J. (2017b). Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep Sea Research Part I: Oceanographic Research Papers, 123, 1-12. Doi: 10.1016/j.dsr.2017.02.005
Zhao, S., Yang, L., Liu, B. H., Ding, Z., Wang, X. (2019). The Application of High Resolution Bathymetric Sidescan Sonar System in Manned Submersible. Hydrographic Surveying and Charting, 39(3): 55-58+79. Doi: 10.3969/j.issn.1671-3044.2019.03.012
Zhong, G., & Peng, X. (2021). Transport and accumulation of plastic litter in submarine canyons—The role of gravity flows. Geology, 49(5), 581-586. Doi: org/10.1130/G48536.1
Zhu, C., Peng, J., & Jia, Y. (2023). Marine geohazards: Past, present, and future. Engineering Geology, 323, 107230. Doi:10.1016/j.enggeo.2023.107230
Zhu, M., Zhang, T. W., Yang, B., Liu, Y. Y., & Tang, J. L. (2014). Sonar system of Jiaolong human-occupied vehicle. Chinese Science Bulletin, 59(35), 3462-3470. Doi: 10.1360/N972014-00408